A Topic-Aware Reinforced Model for Weakly Supervised Stance Detection
نویسندگان
چکیده
منابع مشابه
Weakly Supervised Action Detection
Detection of human action in videos has many applications such as video surveillance and content based video retrieval. Actions can be considered as spatio-temporal objects corresponding to spatio-temporal volumes in a video. The problem of action detection can thus be solved similarly to object detection in 2D images [3] where typically an object classifier is trained using positive and negati...
متن کاملWeakly Supervised Tweet Stance Classification by Relational Bootstrapping
Supervised stance classification, in such domains as Congressional debates and online forums, has been a topic of interest in the past decade. Approaches have evolved from text classification to structured output prediction, including collective classification and sequence labeling. In this work, we investigate collective classification of stances on Twitter, using hinge-loss Markov random fiel...
متن کاملCollaborative Learning for Weakly Supervised Object Detection
Weakly supervised object detection has recently received much attention, since it only requires imagelevel labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this probl...
متن کاملWeakly Supervised Learning for Salient Object Detection
Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...
متن کاملContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
We aim to localize objects in images using image-level supervision only. Previous approaches to this problem mainly focus on discriminative object regions and often fail to locate precise object boundaries. We address this problem by introducing two types of context-aware guidance models, additive and contrastive models, that leverage their surrounding context regions to improve localization. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33017249